
GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

GnuCOBOL 3.1.2 [23Dec2020] Build Guide
for MSYS2 64-bit - Minimalist GNU for Windows
GCC version (MinGW) "10.2.0"

cobc (GnuCOBOL) 3.1.2
Copyright (C) 2020 Free Software Foundation, Inc.
Written by Keisuke Nishida, Roger While, Ron Norman, Simon Sobisch, Edward Hart.

This document was prepared by: Arnold J. Trembley (arnold.trembley@att.net)
and last updated Wednesday, 30 December 2020.

Special thanks go to Simon Sobisch, the GnuCOBOL project leader, who built the "pacman"
package and answered numerous questions for me. This procedure will build a 64-bit MSYS2
MinGW GnuCOBOL 3.1.2 compiler on Windows, with gmplib, ncurses, and Oracle Berkeley
Database (for Indexed Sequential file access support).

STEP01 - Download MSYS2/MinGW64

Go to http://www.msys2.org/ and download "msys2-x86_64-20201109.exe"
"msys2-x86_64-20201109.exe"

STEP02 - Disable Anti-Virus (optional)

Close all web browsers and disable real-time Anti-Virus scanning.

STEP03 - Install MSYS2/MinGW64

Install "msys2-x86_64-20201109.exe" into the default "C:\msys64" folder.
Accept the default start menu shortcut folder "MSYS2 64bit".
(You can actually install this to ANY folder on ANY drive letter, but for my example I am using the
supplied default of "C:\msys64".)
Then click on "run MSYS2 64-bit now" and click on finish.
This should open the bash shell window for you.

Page 1

GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

STEP04 - Apply MSYS2 Updates

In the bash shell, run "pacman -Syu"
Answer "Y" to "Proceed with installation?"

After installation finishes, shut down MSYS2, and start it up again.

STEP05 - Finish Applying MSYS2 Updates

Then run “pacman -Su” until there are no more updates to install.

Then run “pacman -S git” to install additional packages.

STEP06 - Download and Install GnuCOBOL 3.1.2-Dev

Then run “pacman -S mingw-w64-i686-gdb mingw-w64-x86_64-gdb”
to install GNU Debugger support. This step is optional, and increases the size of the 32-bit and
64-each compiler folder by about 300 megabytes.

Then run “pacman -S mingw-w64-i686-gnucobol mingw-w64-x86_64-gnucobol”
to install 32bit (i686) and 64bt (w64-x86) implementations of GnuCOBOL 3.1.2.

Or run "pacman -U mingw-w64-i686-gnucobol mingw-w64-x86_64-gnucobol" to update them.
Or run "pacman -R mingw-w64-i686-gnucobol mingw-w64-x86_64-gnucobol" to delete them.
You can also skip the "i686" version if you only want "x86_64" for 64-bit GnuCOBOL.
You can also run "pacman -Ss gnucobol" to discover what GnuCOBOL versions are available.

Once all this completes successfully, type “exit” to close MSYS2, and go to the testing steps.

Answer Y or All to prompts when they appear. This step runs for about 5-10 minutes.

Once this is done, it should be safe to re-enable your Anti-Virus program.

Page 2

GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

STEP07 - Test GnuCOBOL in the 32-bit and 64-bit MSYS2 bash shells

This step is optional. It is for testing GnuCOBOL in the bash shell.

Start "MSYS2 MinGW 32-bit" from "MSYS2 64bit" in the start menu. This will be a bash shell.

Enter "cd /mingw32"

At this point you can run "cobc --info" and "cobcrun --info" to verify this is 32-bit GnuCOBOL.

Enter ". cobenv.sh" (or "source cobenv.sh") to set environment variables. There must be a blank
space after the period/full stop in ". cobenv.sh".

Now run a test compile to create an exe. In my case I used a COBOL program named
testfunc.cob.

Run "cobc -x -Wall -debug -fnotrunc -t testfunc.lst testfunc.cob" to create testfunc.exe.
Note to windows users: you can use "ls" to list files in a bash shell window.

Enter "./testfunc" to run testfunc.exe

Now compile the same program as a dll file:
Run "cobc -m -Wall -debug -fnotrunc -t testfunc.lst testfunc.cob" to create testfunc.dll

Enter "cobcrun TESTFUNC" (note that uppercase letters are required for the COBOL dll name) to
run testfunc.dll.

Type "exit" to close "MSYS2 MinGW 32-bit"

Start "MSYS2 MinGW 64-bit" from "MSYS2 64bit" in the start menu.

Run "cd /mingw64"

The rest of this test is the same commands used for testing \mingw32.
Enter ". cobenv.sh" (or "source cobenv.sh") to set environment variables, etc.

Type "exit" to close "MSYS2 MinGW 64-bit"

Page 3

GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

STEP08 - Test GnuCOBOL in Windows cmd.exe

This step is optional. It is for testing GnuCOBOL in Windows cmd.exe

Open a cmd.exe window and navigate to "C:\msys64\mingw32" as the current directory

Enter "bin\cobenv --verbose" (or bin\cobenv -v) This sets the environment variables.

At this point you can run "cobc --info" and "cobcrun --info" to verify this is 32-bit GnuCOBOL.

Now run a test compile to create an exe. In my case I used a COBOL program named
testfunc.cob.

Run "cobc -x -Wall -debug -fnotrunc -t testfunc.lst testfunc.cob" to create testfunc.exe

Type "testfunc" to run testfunc.exe

Now compile the same program as a dll file:

Run "cobc -m -Wall -debug -fnotrunc -t testfunc.lst testfunc.cob" to create testfunc.exe

Run "cobcrun TESTFUNC" (note that uppercase letters are required for the COBOL dll name) to
Run testfunc.dll.

Close the cmd.exe window.

Open a cmd.exe window and navigate to "C:\msys64\mingw64" as the current directory

Enter "bin\cobenv --verbose" (or bin\cobenv -v) This sets the environment variables.

At this point you can run "cobc --info" and "cobcrun --info" to verify this is 32-bit GnuCOBOL.

Run the same tests in the "C:\msys64\mingw64" folder as in the "C:\msys64\mingw32" folder.

Close the cmd.exe window.

Page 4

GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

STEP09 - Build a 64-bit GnuCOBOL Compiler Folder.

Copy the entire "C:\msys64\mingw64" folder to a new folder. I suggest naming the new folder
"C:\GC312-BDB-M64" but you can choose any folder name on any drive letter. For my example I
will be using "C:\GC312-BDB-M64".

This folder is quite large, about 1,092 megabytes, if GNU debugger is included.

Once you create your "C:\GC312-BDB-M64" folder, you can strip out a few files to make it
smaller.

You can run "rmdir /s C:\GC312-BDB-M64\share\doc\db" to remove 88.6 megabytes of
Berkeley Database documentation manuals.

You can run "rmdir /s C:\GC312-BDB-M64\share\doc\gettext" to remove 3.77 megabytes of
gettext documentation

You may want to copy the following “gcshrink.cmd” file into your "C:\GC312-BDB-M64" folder
and run it to remove unneeded files:

@echo off
echo strip out unneeded GnuCOBOL components
echo.

PAUSE

echo.
echo STEP01 install strip.exe
xcopy bin\strip.exe .

echo.
echo STEP02 install libiconv-2.dll
xcopy bin\libiconv-2.dll .

echo.
echo STEP03 strip unneeded bin and lib components
strip -p --strip-debug --strip-unneeded bin*.dll bin*.exe lib*.a

echo.
echo STEP04 delete strip.exe and libiconv-2.dll
del strip.exe libiconv-2.dll

Page 5

../../../GC22B-64
../../../GC30B-64

GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

echo.
echo strip.exe completed

rem GOTO :ALLDONE

echo.
echo STEP05 delete \etc folder
rmdir /s /q \etc

echo.
echo STEP06 delete \lib subfolders
rmdir /s /q lib\gettext
rmdir /s /q lib\pkgconfig
rmdir /s /q lib\terminfo

echo.
echo STEP07 delete \share\doc subfolders
rmdir /s /q share\doc\db
rmdir /s /q share\doc\expat
rmdir /s /q share\doc\gettext
rmdir /s /q share\doc\libasprintf
rmdir /s /q share\doc\libiconv
rmdir /s /q share\doc\mpfr

echo.
echo STEP08 delete \share\licenses\ subfolders
rmdir /s /q share\licenses\bzip2
rmdir /s /q share\licenses\db
rmdir /s /q share\licenses\expat
rmdir /s /q share\licenses\gettext
rmdir /s /q share\licenses\headers
rmdir /s /q share\licenses\libiconv
rmdir /s /q share\licenses\libsystre
rmdir /s /q share\licenses\libtre
rmdir /s /q share\licenses\libwinpthread
rmdir /s /q share\licenses\winpthreads
rmdir /s /q share\licenses\bzip2
rmdir /s /q share\licenses\zlib

echo.
echo STEP09 delete \share\ subfolders
rmdir /s /q share\aclocal
rmdir /s /q share\gettext
rmdir /s /q share\gettext-0.19.8
rmdir /s /q share\info
rmdir /s /q share\locale
rmdir /s /q share\man
rmdir /s /q share\pkgconfig
rmdir /s /q share\tabset
rmdir /s /q share\terminfo

echo.

Page 6

GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

echo step10 delete \bin\bz* components
del /q bin\bz*.*

echo.
echo step11 delete \bin\gettext* components
del /q bin\gettext*.*

echo.
echo unneeded GnuCOBOL components have been removed

:ALLDONE
ECHO.

This will shrink the folder down to about 725 megabytes. This folder can be compressed down
to about 74 Megabytes using 7-Zip with maximum compression.

Page 7

GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

NOTE: You can use the same procedure to build a 32-bit GnuCOBOL compiler, just start by
copying the "C:\msys64\mingw32" directory. But it is also quite large, about 861 megabytes.
“Shrinking” will reduce that to about 704 megabytes, and 7-Zip will shrink it to about 77
megabytes.

The "cobenv.cmd" file sets slightly different environment variables for 64-bit MSYS2 MinGW
GnuCOBOL compared to MinGW32 bit builds, because the directory structure is slightly
different in MinGW64. But it will still work with OpenCobolIDE 4.7.6.

The MSYS2 MinGW64 GnuCOBOL executable programs (whether 64-bit or 32-bit) are much
larger than programs compiled with MinGW32 GnuCOBOL.

Here is an example of 64-bit MinGW GnuCOBOL environment variables established by the
“cobenv.cmd” script, which can be adapted for OpenCobolIDE 4.7.6:

C:\GC312-BDB-M64>bin\cobenv --showenv
current environment:
 PATH=C:\GC312-BDB-M64\bin; (your other path folders)
 COB_LIBRARY_PATH=C:\GC312-BDB-M64\lib\gnucobol
 COB_CONFIG_DIR=C:\GC312-BDB-M64\share\gnucobol\config
 COB_COPY_DIR=C:\GC312-BDB-M64\share\gnucobol\copy
C:\GC312-BDB-M64>

Page 8

GnuCOBOL 3.1.2 Build Guide for MSYS2 64-bit (draft)

As of 10 July 2020, the MSYS2 MinGW 64-bit and 32-bit GnuCOBOL 3.1.2-rc1.0 binaries can be
downloaded from the following addresses:

http://www.arnoldtrembley.com/GC312-BDB-M64-rename-7z-to-exe.7z

http://www.arnoldtrembley.com/GC312-BDB-M32-rename-7z-to-exe .7z

Due to a security restriction from my web hosting service I cannot host “.exe” files. So the new
files have been renamed with “.7z” as their file extension. After downloading they can be
opened using 7-Zip, or the windows file extensions can be renamed from “.7z” to “.exe”,
allowing them to be used as self-extracting archives. The self-extracting file will prompt you to
supply a folder name for the compiler. It can also be installed to a drive other than your C:
drive.

7-Zip is open source software available from http://www.7-zip.org/

In the future, new binaries will be added to the following page:

http://www.arnoldtrembley.com/GnuCOBOL.htm

For additional assistance, please feel free to try the GnuCOBOL Forums:

https://sourceforge.net/p/open-cobol/discussion/

=====end=====

Page 9

https://sourceforge.net/p/open-cobol/discussion/
http://www.7-zip.org/
http://www.arnoldtrembley.com/GC31-rc1-BDB-M64
http://www.arnoldtrembley.com/GC31-rc1-BDB-M64-rename-7z-to-exe.7z

