
comp.lang.cobol

COBOL compiler written in COBOL (too old to reply)

I ended up with a language that looked very much like a COBOL procedure
division, with most of the COBOL verbs allowable.
The compile time was a few seconds, and the object could be stored
together with the interpreter as a permanent program.
There was also a decompiler built in so the original source could be
examined if needed.

Thousands of programs were written in UT06.
Eventually the DP department installed an IBM mainframe, and it was an
easy matter to recompile UT06 for IBM instead of ICL.
Those thousands of UT06 programs continued to work with no changes
needed.

I still have the source of UT06. In theory it could be completed so that
it could compile itself indefinitely.
Of course there is now no point in doing that. (Who uses COBOL these
days? Don't answer that!)
However I have since written compilers that do compile themselves, and
there are some advantages in that (but those languages are unlike COBOL).

OK then, any questions? Or shall I go back to my rest home :)

(snip)
I still have the source of UT06. In theory it could be completed so that
it could compile itself indefinitely.
Of course there is now no point in doing that. (Who uses COBOL these
days? Don't answer that!)
However I have since written compilers that do compile themselves, and
there are some advantages in that (but those languages are unlike COBOL).
OK then, any questions? Or shall I go back to my rest home :)

Is UT06 available for download? How big is the source file?
--
http://arnold.trembley.home.att.net/

Post by Arnold Trembley
(snip)
I still have the source of UT06.

Is UT06 available for download? How big is the source file?

I'd have to type it in off the printout that I have, which I will do if
anyone is really interested. First I'll have to find the printout, which
is stored among thousands of other things I have. I saw it a few weeks
ago so there is hope.

But first, it's based on pre-1974 COBOL, and as it stands, there are
three predefined areas, Record, Print and Work areas.
Fields within an area are defined as they are used, e.g. you can say
IF R12 = "TRANS" MOVE "LONDON" to P20.
-- which works with a 5 character field in position 12 of the Record
area, and a 6 char field in position 20 of the Print line.

You could call them R_Code_12 and P_City_20 if you wanted to, since only
the first character and the numeric part define the field.

With UT06 I never implemented symbolic names. I did that later with other
languages, which I should probably discuss elsewhere.

Post by DSlash
Post by Arnold Trembley

(snip)

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

2 of 18 12/14/2021, 11:02 PM

I still have the source of UT06.
Is UT06 available for download? How big is the source file?

I'd have to type it in off the printout that I have, which I will do if
anyone is really interested. First I'll have to find the printout, which
is stored among thousands of other things I have. I saw it a few weeks
ago so there is hope.

Well, I don't want to give you a huge typing assignment, but I am
curious as to how UT06 worked.

Post by DSlash
But first, it's based on pre-1974 COBOL, and as it stands, there are
three predefined areas, Record, Print and Work areas.
Fields within an area are defined as they are used, e.g. you can say
IF R12 = "TRANS" MOVE "LONDON" to P20.
-- which works with a 5 character field in position 12 of the Record
area, and a 6 char field in position 20 of the Print line.
You could call them R_Code_12 and P_City_20 if you wanted to, since only
the first character and the numeric part define the field.

So, did UT06 take statements like 'IF R12 = "TRANS" MOVE "LONDON" to
P20.' and compile/translate them into some code of tokenized code that
was then processed by a run time executor? Perhaps I am assuming too
much, but that sounds similar to IBM Series/1 EDL (Event Driven
Language), used on an extinct 16-bit minicomputer. Technically, it
was an interpreter, but in practice the performance was very close to
native object code.

Rather than typing in the original UT06 source code (if that's too
much of a chore), perhaps you could just describe the general approach
in a little more detail. For example, how did UT06 handle
arithmetic? Besides the IF and MOVE statements from the previous
example, what other kinds of statements did UT06 handle? READ?
WRITE? GOTO? Did UT06 do both compilation and execution?

Post by DSlash
With UT06 I never implemented symbolic names. I did that later with other
languages, which I should probably discuss elsewhere.

Please, tell me more!
--
http://arnold.trembley.home.att.net/

On Wed, 01 Oct 2003 04:46:23 GMT, Arnold Trembley
Post by Arnold Trembley

Post by DSlash
I'd have to type it in off the printout that I have, which I
will do if anyone is really interested.
First I'll have to find the printout, which is stored among
thousands of other things I have. I saw it a few weeks
ago so there is hope.

I have found it! How many programmers can find 17 compiler printouts of a
program they wrote in 1974/75? It was my last COBOL program,
incidentally. I even found some punch cards with the original source on.
The company who employed me does not exist any more.

Post by Arnold Trembley
Well, I don't want to give you a huge typing assignment, but I am
curious as to how UT06 worked.

UT06 has 1545 lines, or 25 pages of lineflo.
I even found the manual for it, which has 21 pages.

Post by Arnold Trembley
Post by DSlash
But first, it's based on pre-1974 COBOL, and as it stands, there are
three predefined areas, Record, Print and Work areas.

Actually in addition there is a Card area (for the card reader), three
printer Heading areas (H, I, J) and a printer control area A.

Yes for that the compiler would generate two instructions in its object
table, each with an op-code and (up to) four parameters.

The op code for IF-equal-character is 7, and the following parameters

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

3 of 18 12/14/2021, 11:02 PM

would be the location of R12, the location in a literal table of "TRANS",
a length of 5, and the instruction step to go to if the test was false.

The op code for MOVE-character is 15, and the following parameters would
be the location of "LONDON" in the literal table, the location of P20,
and a length of 6.

Post by Arnold Trembley
Did UT06 do both compilation and execution?

UT06 was a single COBOL program of 13056 24-bit words consisting
of a compiler compiling pseudo-COBOL source to an internal table, and an
interpreter that executed the instructions in the table, plus a debugging
decompiler that translated the table back to a form vaguely like the
original source.

Post by Arnold Trembley
Perhaps I am assuming too
much, but that sounds similar to IBM Series/1 EDL (Event Driven
Language), used on an extinct 16-bit minicomputer. Technically, it
was an interpreter, but in practice the performance was very close to
native object code.

With UT06, most instructions used subscripted data, and there was the
slight overhead of selecting the next instruction in the table.
But efficiency was never a problem, and machines so much faster now.

Post by Arnold Trembley
Rather than typing in the original UT06 source code (if that's too
much of a chore), perhaps you could just describe the general approach
in a little more detail. For example, how did UT06 handle
arithmetic? Besides the IF and MOVE statements from the previous
example, what other kinds of statements did UT06 handle? READ?
WRITE? GOTO?

UT06 was originally written for ICL who had binary numbers held in 8, 16,
24, 32, 40 or 48 bit fields, and display numbers of up to 13 digits, so
UT06 had to handle all of those, and convert between them.
Possible editing was: leading zeroes, zero suppress, floating minus,
decimal point.

IF-tests worked with all of those, and also with alpha literals of up to
79 characters (to fit on a punch card!) and even with single bit fields,
which were useful as Y/N flags in records.

UT06 keywords were:

File definition: IN OUT [MT ED DA GENERATION BLOCK] (up to 15 files)
Input/Output: READ [AT END] WRITE PRINT
Instructions: MOVE [TO] GO TO PERFORM STOP CALL
ADD [TO] SUBTRACT [FROM] MULTIPLY [BY] DIVIDE [INTO]
IF [< = > LESS THAN EQUAL TO GREATER THAN NOT] .

Post by Arnold Trembley
Post by DSlash
With UT06 I never implemented symbolic names. I did that later with
other languages, which I should probably discuss elsewhere.

Please, tell me more!

I've posted some details elsewhere in this thread.
The other languages departed more and more from COBOL so maybe there is a
more suitable newsgroup for a discussion.
On the other hand some might be interested in how readable code is when
you reduce COBOL keywords to the absolute minimum.
Also, by having instructions in uppercase and fieldnames in lower case
there are no reserved words, so very old programs will continue to
compile for ever, no matter what new instructions are implemented.

Good. I'm sure there's more than one of us intrigued by you description of

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

4 of 18 12/14/2021, 11:02 PM

UT06.

And as for going down Memory Lane, 'By GEORGE he's got it'. I didn't program
back then (systems analyst) but you rang a bell mentioning the GEORGE O/S.
(Unigate - '63 - '67, ICT 1500 with MCF; Debenhams - '67 - '75 - ICL 1900
series, hard disks, OMR document Reader (UDT)).

Jimmy, Calgary, AB

Post by James J. Gavan
Good. I'm sure there's more than one of us intrigued by you description of
UT06.
And as for going down Memory Lane, 'By GEORGE he's got it'. I didn't program
back then (systems analyst) but you rang a bell mentioning the GEORGE O/S.
(Unigate - '63 - '67, ICT 1500 with MCF; Debenhams - '67 - '75 - ICL 1900
series, hard disks, OMR document Reader (UDT)).

There's lots of work been done creating those old systems. It seems a
pity for nothing much to be kept. But is there any point? I think so.
I once wrote BEST programs for NCR, and that was a truly amazing program
generator designed in the 1960s.
I still have printouts of the generated code :)

Here's the basics of the UT06 program generator source code.
There's a 50 line routine called READ-WORD that gets the next word of
source off a card. It handles anything including alpha and numeric
literals, end of card etc.
The code for each instruction calls READ-WORD as needed and generates
code into CELL which is then moved with STORE-CELL to the big table of
object code CELL-STORE, then it goes to NEXT-WORD to find another source
instruction.
Not very structured I admit, but a GO TO is much more efficient than some
kind of loop and test, and this is a compiler right?, and needs to be
efficient.

The RUN-GENERATED-PROGRAM SECTION is really the guts of UT06.
The GO TO ... DEPENDING ON code is what the whole thing is about.
It just cycles around until it hits a STOP instruction.
There, see it's easy - anyone could write a compiler in COBOL :)

_______UT06 Program Generator__Created Oct 1974___________

[snip 40 line setup
NEXT-WORD.
PERFORM READ-WORD.
CHECK-WORD.
[snip 8 line setup
IF WORD-2-CHAR = "AD" GO TO COMPILE-ADD.
IF WORD-2-CHAR = "DI" GO TO COMPILE-DIVIDE.
IF WORD-2-CHAR = "EL" GO TO COMPILE-ELSE.
IF WORD-2-CHAR = "GO" GO TO COMPILE-GO.
IF WORD-2-CHAR = "IF" GO TO COMPILE-IF.
IF WORD-2-CHAR = "MO" GO TO COMPILE-MOVE.
IF WORD-2-CHAR = "PE" GO TO COMPILE-PERFORM.
[snip 20 similar lines
COMPILE-ADD.
MOVE TYPE-ADD TO CELL-TYPE.
GO TO COMPILE-ARITHMETIC.

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

5 of 18 12/14/2021, 11:02 PM

COMPILE-GO.
MOVE TYPE-GO TO CELL-TYPE.
PERFORM READ-WORD.
IF WORD-2-CHAR = "TO" PERFORM READ-WORD.
MOVE WORD-16-CHAR TO CELL-LABEL.
PERFORM STORE-CELL.
GO TO NEXT-WORD.
[snip 720 similar lines

RUN-GENERATED-PROGRAM SECTION.
[snip 20 line setup
NEXT-CELL.
ADD 1 TO CELL-POINT.
ACTION-CELL.
MOVE CELL-STORE(CELL-POINT) TO CELL.
BRANCH-ON-CELL-TYPE.
GO TO
RUN-ADD
RUN-DIVIDE
RUN-GO
RUN-IF-EQUAL-CHARS
RUN-IF-NOT-EQUAL-CHARS
RUN-IF-GREAT-CHARS
RUN-IF-NOT-GREAT-CHARS
[snip 14 similar lines
RUN-MULTIPLY
RUN-PERFORM
RUN-PRINT
RUN-READ
RUN-STOP
RUN-SUBTRACT
RUN-WRITE
DEPENDING ON CELL-TYPE.

RUN-ADD.
ADD BINARY-WORD(CELL-LOC1) TO BINARY-WORD(CELL-LOC2).
GO TO NEXT-CELL.
RUN-GO.
MOVE CELL-EXIT TO CELL-POINT.
GO TO ACTION-CELL.
[snip 330 similar lines

DSlash ***@hotmail.moc
Date: 10/1/03 11:52 PM EST
Message-id: <blgb3h$u22$***@lust.ihug.co.nz>

posts

<<
Not very structured I admit, but a GO TO is much more efficient than some
kind of loop and test, and this is a compiler right?, and needs to be
efficient.

The RUN-GENERATED-PROGRAM SECTION is really the guts of UT06.
The GO TO ... DEPENDING ON code is what the whole thing is about.
It just cycles around until it hits a STOP instruction.

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

6 of 18 12/14/2021, 11:02 PM

There, see it's easy - anyone could write a compiler in COBOL :)
Your posts are most interesting.

I do disagree with your comment
<<
... Not very structured ...
That is totally wrong, IMHO. Like, totally!

A computed GOTO is what modern COBOL INVOKE does! A computed GO TO is what
'message handing' is in SmallTalk and early efforts at object programming in C.
(In many early efforts 'message' were just data reduced to an index to use old
geezer terminology. Intermediate geezers would call this 'transaction
processing'.)

It is entirely structured.

When Kristen Nygaard and Ole-Johan Dahl extended ALGOL to be a SIMULAtot they
had to build something into the compiler that selected methods (they too called
them PROCEDURES) from a list. You can bet the references to PROCEDURES of a
CLASS were in an array, and that index data items inside of the compiler were
used to select them.

A computed GO TO is a wonderful thing.

It is excess GO TOs that are a problem. In COBOL simple GO TOs, computed GO TOs
and ALTER GO TOs decrease productivity of technical workers as they accumulate
in a program.

This can be translated to modern times for modern business applications
managers. The deeper we nest the inheritance, the harder it is going to be to
maintain these systems, because of decreasing understanding.

Best Wishes,
Bob Rayhawk
***@aol.com

Post by DSlash
Not very structured I admit, but a GO TO is much more efficient than some
kind of loop and test, and this is a compiler right?, and needs to be
efficient.
I do disagree with your comment
<<
... Not very structured ...
That is totally wrong, IMHO. Like, totally!
A computed GO TO is a wonderful thing.

Yes I agree it's a wonderful thing, in fact it's the first piece of code
that I wrote for UT06.
I was not criticizing the computed GO TO as unstructured.

I didn't make it clear that I was referring to other GO TOs in UT06,
where the compiler code has a number of routines at the top which are
branched to depending on whether another keyword needs to be read or not,
and other similar pieces of code.

Some instructions have optional parameters, so UT06 doesn't know that
they are omitted until it has read another keyword.
For instructions that don't have parameters, the compiler branches to the
place that reads another keyword.

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

7 of 18 12/14/2021, 11:02 PM

In theory there is a structured way of doing that, but I was worried
about branching out of a PERFORM when unexpected things happened, e.g. a
compile error, or end of source with a missing parameter.

DSlash ***@hotmail.moc
Date: 10/1/03 11:52 PM EST
Message-id: <blgb3h$u22$***@lust.ihug.co.nz>

posted a front end if/elif as

<<
CHECK-WORD.
[snip 8 line setup
IF WORD-2-CHAR = "AD" GO TO COMPILE-ADD.
IF WORD-2-CHAR = "DI" GO TO COMPILE-DIVIDE.
IF WORD-2-CHAR = "EL" GO TO COMPILE-ELSE.
IF WORD-2-CHAR = "GO" GO TO COMPILE-GO.
IF WORD-2-CHAR = "IF" GO TO COMPILE-IF.
IF WORD-2-CHAR = "MO" GO TO COMPILE-MOVE.
IF WORD-2-CHAR = "PE" GO TO COMPILE-PERFORM.
Anyone can answer this simple question.

Wasn't there a thing with early COBOL that all the reserved words had a unique
pair of first two letters? Did this apply to all reserved words or just the
verbs? Does it still apply?

Post by RKRayhawk
Anyone can answer this simple question.
Wasn't there a thing with early COBOL that all the reserved words had a unique
pair of first two letters?

I very much doubt it - DISPLAY DIVIDE.

You are probaly thinking of BASIC.
Post by RKRayhawk
Did this apply to all reserved words or just the
verbs? Does it still apply?

It never did.

I do recall an ICL product RAPIDWRITE that used 2 character operation
codes and fixed format cards that would generate Cobol, or possibly
just used the Cobol compiler to generate machine code.

Post by DSlash
The company who employed me does not exist any more.

Motor Specs became Repco (N.Z.) Ltd. I recall doing some support work
at the Anzac Ave computer site, I worked for ICL. They had designed a
daily stock control update system and it was going to take > 24 hours
for each run.

Names Carol Price and Brian McKenna spring to mind.

Post by Richard
Post by DSlash
The company who employed me does not exist any more.

Motor Specs became Repco (N.Z.) Ltd. I recall doing some support work
at the Anzac Ave computer site, I worked for ICL. They had designed a
daily stock control update system and it was going to take > 24 hours
for each run.

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

8 of 18 12/14/2021, 11:02 PM

Was that prior to May 1974? As it happens I have a printout of that
program, P512, first written in Jan 1974. I understand that it took
several hours to run.

My first job when I arrived at Motor Specs in May 1974 was to write a
stock picking program separate from the main stock update P512.
The requirement was that this picking program be as fast as possible, and
my (COBOL) version took half an hour to run each day.
I am still aghast that I used an ALTER GO TO to get the maximum speed
from it, but it did the trick. The main update was then run weekly
without the stock picking requirement.

Post by Richard
Names Carol Price and Brian McKenna spring to mind.

Yes I met Carol again years later. She was the only COBOL programmer I've
met who could code a COBOL program from the beginning to the end without
going back to add more data definitions etc :)

Motor Specs was certainly the friendliest place I've worked.

DSlash ***@hotmail.moc
Date: 10/1/03 6:33 PM EST
Message-id: <blfocc$i7l$***@lust.ihug.co.nz>

Speaking of an application program said

<<
I am still aghast that I used an ALTER GO TO to get the maximum speed
from it, but it did the trick.
In modern object oriented system overriding inherited class methods with
different methods is an ALTER GO SUB. Use of 'this' pointer and
'super' pointer are transitory ALTER GO SUBs.

The COBOL ALTER GO TO construct is entirely valid. Like a simple GO TO it can
be misused, but the concept is useful when used in moderation, even in
application code.

The meaning of ALTER GO TO is difficult to pass on to the next programmer. The
meaning of a program with many GOTOs is difficult to pass on to the next
programmer. The issue is the productivity of the laborers. It is crude, but
simple. We do grind them to a halt if we generate code with many of these, but
the constuct in isolation is not difficult.

Actually, if you follow one tenet of the more radical variations of structured
programming, you take a lot of pressure off of GO TOs.

Honestly, this is rare, but if you actually keep your program size to a page or
two of PROCEDURE DIVISION, then what is the problem with ALTER GO TO? It's not
like business code is a Rubik's Cube. What's the problem?

But more seriously, it is excess jumps that make it hard for a person to
understand. They just can't track it, especially under pressure.

The ALTER GO TO is a legitimate construct. You cannot override a class method
in modern technologies without do exactly that! And I am sure that deeply
enherited application classes take up many, many pages of code. In fact if you
are dealing with polymorphism you must read the pages backwards, scout's honor.

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

9 of 18 12/14/2021, 11:02 PM

A polymorphed method is named at the bottom (or atleast a lower level) of the
method name sequence, yet if it abends or offends you with its behavior, you
may need to read all the way through the inheritance sequence to actually
understand how 'that' method was invoked. Unquestionabley the modern graphical
toolsets help greatly in this.

A modern programmer can not even succeed in school if they do not understand
how things are altered when we inherit. The modern situation is much more
cerebral than ALTER GO TO. Although, as I have posted elsewhere, the modern OOP
tools automate the coder, so that they do not have to code the ALTER GO TO. The
alteration is in the compiler, interpreter, JIT compiler, or the run-time. But
you cannot master it unless you understand the method address alteration.

Just as your code was made more efficient with the ALTER GO TO, modern systems
are efficient at run time, and the tools do make the technician efficient in
the coding. But ya gotta understand the ALTER, even if you call it 'inheritance
override', 'super' or 'this'; or you will be lost.

Best Wishes,
Bob Rayhawk
***@aol.com

Post by DSlash
I am still aghast that I used an ALTER GO TO to get the maximum speed
from it, but it did the trick.
In modern object oriented system overriding inherited class methods with
different methods is an ALTER GO SUB. Use of 'this' pointer and
'super' pointer are transitory ALTER GO SUBs.
The COBOL ALTER GO TO construct is entirely valid.
Like a simple GO TO it can be misused, but the concept is useful
when used in moderation, even in application code.

Most DP departments that I worked for had standards that banned ALTER GO
TO, among other things.
But in this case efficiency was paramount, as the only other option was
to buy a much faster mainframe to run the stock picking program, which
was the central program for the company.

It was impossible to write it in PLAN, the ICL assembler, with any
certainty of it working properly. In fact there's a little story about
what happened when the first system test of my program was done compared
with the old program. Mine was then used unchanged!

(snip)
UT06 has 1545 lines, or 25 pages of lineflo.
I even found the manual for it, which has 21 pages.
(snip)
File definition: IN OUT [MT ED DA GENERATION BLOCK] (up to 15 files)
Input/Output: READ [AT END] WRITE PRINT
Instructions: MOVE [TO] GO TO PERFORM STOP CALL
ADD [TO] SUBTRACT [FROM] MULTIPLY [BY] DIVIDE [INTO]
IF [< = > LESS THAN EQUAL TO GREATER THAN NOT] .

How were files specified, in order to disambiguate one from another?
Did UT06 support fixed-length, variable-length, or line-sequential
files?

How were labels or targets of GO TO and PERFORM written in UT06 source
code? How were they handled in the execution table?

I think this is fascinating! I can almost see how to write it.
--
http://arnold.trembley.home.att.net/

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

10 of 18 12/14/2021, 11:02 PM

18 years ago

On Thu, 02 Oct 2003 08:15:05 GMT, Arnold Trembley
Post by Arnold Trembley
How were files specified, in order to disambiguate one from another?

From the UT06 manual:

The following files may be open at any one time:
Card Reader, Printer,
One MT or EDS (serial or sequential) input file
One MT or EDS (serial or sequential) output file

Mutiple input files:
If more than one IN statement is present, the files defined by IN
statements will be read one at a time in order of definition. At the end
of the last input file the AT END action will be taken.

File numbers may be differentiated by using file numbers in the range 0
to 15. When reading, all input files with the file number specified in
the read statement will be read once, in the order of the IN statements,
before the AT END statement takes effect.

A file may be read an unlimited number of times by issuing another read
after end of file.

READ [Fn] [AT END statement-1[statement-2 ... statement-n]] .
Post by Arnold Trembley
Did UT06 support fixed-length, variable-length, or line-sequential
files?

Being ICL, all records had a record length at the beginning, so there
could be any mixture of different length records in a single file.

Post by Arnold Trembley
How were labels or targets of GO TO and PERFORM written in UT06 source
code? How were they handled in the execution table?

A label had to start with a numeric character and be up to 16 characters
long. That was so a label could not be confused as an instruction
keyword. Because UT06 source could be entirely free-form to allow it to
be passed as parameters from the GEORGE operating system, UT06 made no
assumptions about where a label might be, unlike COBOL where a label must
be at the start of a line.
Therefore in UT06 there could be many labels on one line.
You could of course make it look like COBOL if you want.

In the execution table there was an op code for a label that was just
ignored at run-time. The label name was put immediately after the label
op-code, to be checked at end of compile, and left there for the
debugging decompiler.

When a GO TO or PERFORM was compiled, the label name was initially put
just after the op-code. Then at end of compile, the execution table was
searched for GO TO and PERFORM op-codes, and for each of those the table
was searched for the label. The cell number of the cell after the label
was then put as one of the parameters for the GO TO/PERFORM.

Post by Arnold Trembley
I think this is fascinating! I can almost see how to write it.

Well I can in time type the whole of UT06.
I doubt if I can scan jiggly old lineprint, but I'll see.
When I depart this life, someone will throw all this stuff away.
I've had cancer twice so it may not be long.

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

11 of 18 12/14/2021, 11:02 PM

Apart from just historical curiosity, is there really a good use for UT06
now? As a fairly powerful utility in a COBOL shop it could be useful, but
I don't think there's any point in adding all modern COBOL features to
it.

Besides since 1975 I've worked on a number of self-compiling compilers
for other commercial languages, and made program generators which I think
are much better since they are non-procedural, take minutes to generate,
and have no bugs.

DSlash ***@hotmail.moc
Date: 10/2/03 5:32 AM EST
Message-id: <blgv0ahln***@lust.ihug.co.nz>

<<
Well I can in time type the whole of UT06.
I doubt if I can scan jiggly old lineprint, but I'll see.
When I depart this life, someone will throw all this stuff away.
If you can get your pages in machine transferable image, I should think that
you could find some volunteers to do a page or so of typing. FAX or GIF or
JPEG.

If you are placing the code in a public domain, then transfering the graphic
image is not less
dramatic.

There is no reason for you to do all of the typing.

You probably can get assistance on the proofing as well if all volunteers have
the graphical image.

If your equipment at home is not best for the task consider using a retail
joint that has good camera technology. Picking up old images on large printout
is not difficult if you have the right equipment. The camera at the core of the
machine is the issue. A request for graphics file output is not unheard of in
modern copy shops.

Did you say you have like 20 some pages?

Best Wishes,
Bob Rayhawk
***@aol.com

Post by RKRayhawk
If your equipment at home is not best for the task consider
using a retail joint that has good camera technology.
Picking up old images on large printout is not difficult if
you have the right equipment. The camera at the core of the
machine is the issue. A request for graphics file output is
not unheard of in modern copy shops.
Did you say you have like 20 some pages?

UT06 has 1545 lines, or 24 pages.
By photocopying it first, I have managed to get a reasonable conversion
to text using TextBridge.
Some lines are even correct!
I'll persevere next week when I have access to a better photocopier.

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

12 of 18 12/14/2021, 11:02 PM

When it's done shall I email it, or post it in the group in several
chunks? There's been nearly 1545 lines of discussion already.

(snip)
UT06 has 1545 lines, or 24 pages.
By photocopying it first, I have managed to get a reasonable conversion
to text using TextBridge.
Some lines are even correct!
I'll persevere next week when I have access to a better photocopier.
When it's done shall I email it, or post it in the group in several
chunks? There's been nearly 1545 lines of discussion already.

I would like to get a copy by email. Would it be possible to put it
on a web page where interested parties could download it? Then you
would only need to post a URL.

With kindest regards,
--
http://arnold.trembley.home.att.net/

In article <blnupi$o93$***@lust.ihug.co.nz>,
DSlash <***@hotmail.moc> wrote:

[snip]
Post by DSlash
When it's done shall I email it, or post it in the group in several
chunks? There's been nearly 1545 lines of discussion already.

Please be so kind to email a copy to me; if you then express no objections
I will post it myself (with appropriate attributions) because I believe
that bandwidth is cheap enough and Google is a passable-enough archive.

DD

Post by d***@panix.com
[snip]

Post by DSlash
When it's done shall I email it, or post it in the group in several
chunks? There's been nearly 1545 lines of discussion already.

Please be so kind to email a copy to me; if you then express no

objections
Post by d***@panix.com
I will post it myself (with appropriate attributions) because I believe
that bandwidth is cheap enough and Google is a passable-enough archive.

I'd like what is posted to be reasonably accurate. TextBridge has
converted the scanned text, and it likes to convert "I" (capital I) into
"1" (one) or "l" (small L), and many other errors.
So it would be nice if someone could run a COBOL compiler on it to at
least check the syntax , before it's posted as a whole.
I'm 25% of the way fixing up the scan, and have reached the Procedure
Division.

I have discovered that the latest printout that I have does not have all
the features specified in the manual. In particular, the code for
arithmetic with other than one word fields is not there, and nor is the
code for single bit fields (which is probably non-standard ICL extension
of COBOL anyway).

It does depend on what you guys want it for. If you actually want to use
it as a file utility, it might be worth someone getting it going as it is
before any improvements are made. Or as a basis for a total rewrite it's
OK as it is as a guide.

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

13 of 18 12/14/2021, 11:02 PM

I have discovered today that UT06 is still in use after 29 years, by a
different company, on a different mainframe (IBM) and in a different
country from where it started. That shows the stability of COBOL!

Post by DSlash
Post by d***@panix.com
[snip]

Post by DSlash
When it's done shall I email it, or post it in the group in several
chunks? There's been nearly 1545 lines of discussion already.

Please be so kind to email a copy to me; if you then express no objections
I will post it myself (with appropriate attributions) because I believe
that bandwidth is cheap enough and Google is a passable-enough archive.

[snip]
Post by DSlash
It does depend on what you guys want it for.

[snip]
Post by DSlash
I have discovered today that UT06 is still in use after 29 years, by a
different company, on a different mainframe (IBM) and in a different
country from where it started. That shows the stability of COBOL!

I cannot speak of what others might want it for... but what you say here
is sufficient reason for me. Flexibility, longevity and stability... who
needs those from a computer language, eh?

DD

Post by d***@panix.com
[snip]

Post by DSlash
When it's done shall I email it, or post it in the group in several
chunks? There's been nearly 1545 lines of discussion already.

Please be so kind to email a copy to me; if you then express no objections
I will post it myself (with appropriate attributions) because I believe
that bandwidth is cheap enough and Google is a passable-enough archive.
DD

Dslash sent me the source code for UT06 in two sections. I have
reformatted it into standard 80-column COBOL, and zipped up several
ms-dos text files. It's about 56K bytes.

You can download the zip file from:
http://home.att.net/~arnold.trembley/ut06.zip

I have it posted on my web page at:
http://home.att.net/~arnold.trembley/prog.htm

Here's a list of the files in the zip archive:

UT06 TXT 49,324 10-09-2003 1:21a UT06.txt
UT06-A01 COB 142,927 10-22-2003 12:46a ut06-a01.cob
UT06-A01 ERR 17,920 10-22-2003 12:46a ut06-a01.ERR
UT06-B01 COB 145,334 10-22-2003 12:46a ut06-b01.cob
UT06-B01 ERR 1,738 10-22-2003 12:47a ut06-b01.ERR
UT06-MAN TXT 15,059 10-22-2003 1:03a UT06-Man.txt

UTO6.TXT is a copy of the previous discussion in comp.lang.cobol,
since it has some useful comments are how UT06 is intended to work.

UT06-A01.COB is the original ICL COBOL source, as close as I can make
it.

UT06-A01.ERR is a compile error listing, but it's based on IBM VS

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

14 of 18 12/14/2021, 11:02 PM

COBOL II syntax, which is why there are so many errors listed.

UT06-B01.COB is a version that I modified, attempting to get UT06 to
compile cleanly with IBM VS COBOL II syntax. There's still a lot of
work to do on the file definitions, building the print subroutine to
replace the A510 subprogram, handling the runtime switches, etc.

UT06-B01.ERR is the error listing for the "IBM compatible" version.
There's still some work to do on the file definitions.

UT06-MAN.TXT is the manual for UT06/5, but the original ICL COBOL
source code was for an earlier version without most of the arithmetic
functions in the manual.

I'm going to try to clean up the COBOL II version a little more, but I
don't have samples of UT06 code for input into the compiler, so
testing might take a while. If anyone wants to try it out, please let
me know of any corrections or improvements that can be made.

Good luck!
--
http://arnold.trembley.home.att.net/

A friend has just pointed me to this thread and sent me a copy of the
source archive.

I've just compiled UT06-A01.COB using #XEKB/#XPCK under GEORGE 3 - it
gave 3 minor compilation errors, now corrected in a version A02 and a
lot of warnings (col 73-80 should be a fixed program identity or blank,
not a repeat of the line number).

It #UT06 now compiles cleanly, but gives 3 missing segments on
consolidation - I'll look at these another night.

Do you mind if I put #UT06 on my web site about the ICL 1900 series
computers? See:-
http://www.icl1900.co.uk/

I am currently running G3 under an executive emulator (in beta test) on
a W98 system. There is still a live site in Russia running G3 under DME.

Better late than never, I guess.

DD

Top Post - nothing below quoted text.

I have no objections to your posting #UT06 on your website.

I can't speak for Dslash, but if he didn't mind me posting a version
on my website, I suppose he would not object either.

With kindest regards,

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

15 of 18 12/14/2021, 11:02 PM

--
http://arnold.trembley.home.att.net/

Post by DSlash
Being ICL, all records had a record length at the beginning, so there
could be any mixture of different length records in a single file.

I suspect that the program will be unusable on most systems because
these require a specific FD to be compiled with specific record sizes
or variable record range.

With the old XEKB (or XE11 to XE20) it ws the block size that was
required to match the actual file.

With disk ISAM files the keys much match between the compile and the
actual disk file. It may be necessary to have a CALL for a file
interface module and then to generate a module per actual file to
access the file correctly.

Post by Richard
Post by DSlash
Being ICL, all records had a record length at the beginning, so there
could be any mixture of different length records in a single file.

I suspect that the program will be unusable on most systems because
these require a specific FD to be compiled with specific record sizes
or variable record range.
With the old XEKB (or XE11 to XE20) it ws the block size that was
required to match the actual file.

UT06 had a predefined output tape file for each block size in use in the
installation, I.e. sizes 64, 128, 512 and 2048, and an input tape file of
block size 2400.

You could say OUT MT "TEST FILE" BLOCK 512
and UT06 would select the correct tape file to do that.

Post by DSlash
Way back in 1974 I was the systems programmer in an all COBOL DP
department, using an ICL 1902A mainframe, with punch card input and tape
and disk storage.

<snip>

Hi Dave

I hadn't read more than three paragraphs when I had the suspicion
that the subject of the post was UT06, (DSlash was also a strong
clue). As a junior prog at MSI Corp in '77 I was at first baffled but soon
enamoured of the power and flexibility of UT06. My crowning
achievement in UT06 was a program to edit the card deck for JF's
timesheet and billing system to weed out the bugs before running the
reports. Lots of fun at Anzac Ave. Loads of talent in the punchroom if
you could get around the 'mother hen' supervisor who guarded her
chicks quite zealously.

We later, of course, worked together at IDAPS with another interpretive
language - TNT which syntactically was like no other language I've seen
before or since.

Whilst I was working on Paxus Polisy in the mid-eighties on Concurrent
minicomputers, (nee Perkin Elmer), I could have made good use of a port of
UT06 to this platform. The PE toolchest was woefully bare. All a bit late

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

16 of 18 12/14/2021, 11:02 PM

now
alas.

Good to hear of you although you can't be in you dotage yet :)

Regards
Martin

On Tue, 30 Sep 2003 12:38:48 GMT, "Martin Jones"
Post by Martin Jones
I hadn't read more than three paragraphs when I had the suspicion
that the subject of the post was UT06, (DSlash was also a strong
clue).

Hi Martin, when I went to IDAPS they had nicknames there, and it amused
them to call me DSlash which is an abbreviation of D/L or DataLength, and
to give me operator number 69!

Post by Martin Jones
As a junior prog at MSI Corp in '77 I was at first baffled but soon
enamoured of the power and flexibility of UT06. My crowning
achievement in UT06 was a program to edit the card deck for JF's
timesheet and billing system to weed out the bugs before running the
reports.

That's probably different from the original billing system for the
department which was written by the Operations manager entirely with
UT06. He was refused funding for that system so wrote it himself. He was
as pleased as Punch as he knew nothing of system design or programming.
He was then quite friendly to me, which was useful to get access to the
computer room, and you know what bastards the Op managers usually are
towards those nuisance programmers.

The bit I liked best was being able to type an entire program on one card
as a parameter for the George operating system.

Post by Martin Jones
We later, of course, worked together at IDAPS with another interpretive
language - TNT which syntactically was like no other language I've seen
before or since.

There's another huge story there. RT who designed TNT, hired me three
times and TNT went on to become the language AMPLE into which I
incorporated much of UT06.
See http://www.ams.co.nz/ and click on Products/AMPS

AMPLE had the left to right processing and the clarity of COBOL needed
for huge business applications, except that keywords were reduced to a
minimum, and I replaced those bloody full-stops with END statements!

AMPLE with its Opsys AMPS (with a C++ interpreter) was originally used by
Prism Software as a generator and interpreter for their generated
packages, hence their applications were double interpreted. The
inefficiency of that was never a problem, in fact all TNT/AMPS systems
are notable for their extreme speed and conciseness. Compiles still take
only seconds (maybe because it uses translate tables rather than table
searches, and garbage collects and virtual storage are unnecessary).

See http://www.prism.co.nz/site.asp?item=whyprism&file=whyprism.html

AMPS has gone on to become DB++ somewhere in Australia, and there are two
further offshoots of AMPS that I've not heard of for years, written by a
number of ex-employees (PW and TMJ where are you?)

Post by Martin Jones
Whilst I was working on Paxus Polisy in the mid-eighties on Concurrent
minicomputers, (nee Perkin Elmer), I could have made good use of a port of
UT06 to this platform. The PE toolchest was woefully bare. All a bit late

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

17 of 18 12/14/2021, 11:02 PM

Continue reading on narkive:

now alas.

You may have noticed that the medical insurance company next door has
lost about $40 million with computer processing problems. They should
have stuck with TNT.

Post by Martin Jones
Good to hear of you although you can't be in you dotage yet :)

I'm retired and think I should write a book about all this.

19 [OT] Fortress Mentality - Doesn't Happen in a Vacuum

178 a history question

51 Aren't the fuddy-duddies in the group going to comment on Fortress

120 a history question

105 out in web comics land...

about - legalese

COBOL compiler written in COBOL https://comp.lang.cobol.narkive.com/pm9XNL0c/cobol-compiler-wr...

18 of 18 12/14/2021, 11:02 PM

